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Abstract  

A significant development in meteorological science has been the creation of Explainable AI (XAI) models that 

use satellite data to predict heavy/high-impact rain events. There is a growing demand for predictive models that 

not only provide accurate forecasts but also provide insights into the underlying decision-making process due to 

the increasing frequency and severity of extreme weather patterns. It is difficult to use traditional machine learning 

(ML) models in high-stakes situations like weather forecasting due to their lack of transparency. XAI fills this 

void by improving the interpretability of models, which is essential for comprehending the factors that lead to 

extreme rainfall events. This paper looks at how convolutional neural networks (CNNs), recurrent neural networks 

(RNNs), and hybrid models can be used to combine satellite-based data with XAI models to predict heavy rain 

events. The spatiotemporal transformer framework, attention mechanisms, and capsule networks are some of the 

cutting-edge deep learning architectures that we are looking into for ways to boost prediction accuracy and 

dependability. The study also emphasizes how model explainability helps end-users like meteorologists, 

emergency response teams, and policymakers build trust. This study aims to provide a comprehensive framework 

for deploying satellite-driven rain prediction models in real-world applications by examining recent advancements 

in XAI for climate risk assessment. In addition, we address issues related to data quality, model interpretability, 

computational efficiency, and scalability when integrating these models with existing weather forecasting 

systems. The findings suggest that XAI models have a lot of potential to change weather forecasting practices by 

making it easier to be prepared for extreme rainfall events and providing clear insights into the decisions made by 

the models. This paper paves the way for the widespread use of weather prediction tools that are more reliable, 

actionable, and interpretable in disaster management and climate adaptation strategies. 
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I. INTRODUCTION 

Effective disaster management relies heavily on accurate rainfall forecasts, particularly in areas that are 

prone to extreme weather conditions like floods and landslides. Early warnings, evacuation plans, and the 

deployment of resources to mitigate damage all depend on the accuracy of rainfall forecasts. Extreme weather 

events are becoming more frequent and more severe as climate change accelerates, highlighting the growing 

significance of accurate rainfall prediction models. By providing early detection, accurate rainfall forecasts enable 

governments and agencies to take proactive measures, ultimately saving lives and minimizing economic loss [1], 

[2].  Satellite data and machine learning (ML) methods have a lot of potential to improve rainfall prediction in 

this situation, especially in complex and dynamic weather systems [3], [4]. 

A. Importance of Rainfall Prediction in Disaster Management  

For disaster management, accurate rainfall predictions are essential because they provide crucial 

information for flood forecasting, landslide risk assessment, and resource allocation. Real-time rainfall forecasts 

enable authorities to take preventative measures before the event escalates in flood-prone areas by allowing them 

to make timely and informed decisions regarding evacuation plans, flood defenses, and emergency response 

strategies. Local governments, for instance, can reduce human and financial losses by establishing evacuation 

routes, activating early warning systems, and mobilizing rescue teams by forecasting heavy rain [5]. In addition, 

accurate rainfall predictions play a crucial role in optimizing irrigation scheduling, increasing crop yield, and 

reducing the negative effects of droughts in regions where water resource management is essential to agriculture. 

Farmers can use these forecasts to decide when to irrigate and when not to, thereby maximizing efforts to conserve 

water and reducing waste [7]. Furthermore, better planning for water retention systems, reservoir management, 

and soil erosion prevention can be made possible by accurate rainfall predictions [6]. 

The need for accurate, timely, and reliable rainfall prediction systems grows ever more urgent as global 

climate change makes extreme weather events more unpredictable. Heavy rainfall events are becoming more 

frequent and more intense as a result of climate change, making traditional weather forecasting methods less 

effective at accurately predicting these events. Extreme weather patterns, like intense monsoons or sudden heavy 

downpours, are getting harder to predict, which can have unanticipated and frequently devastating effects. The 

significance of sophisticated, data-driven forecasting strategies that are able to keep up with these changing 

obstacles is emphasized by this unpredictability [8]. Meteorological models based on deep learning algorithms 

that use real-time satellite data offer a chance to significantly improve rainfall forecast accuracy. These models 

are able to analyze large datasets and find patterns that traditional forecasting methods might miss by utilizing 

satellite imagery and other technologies for remote sensing. This ultimately leads to better and more accurate 

predictions of rainfall events [9], [10]. Given the increasing severity of climate change's effects, such 

enhancements in forecasting capabilities are absolutely necessary for proactive disaster management. 

B. Challenges with Conventional Weather Forecasting Models 

Even though they are fundamental, traditional weather forecasting models struggle to anticipate highly 

localized, transient, and non-linear extreme rainfall events. Large-scale numerical weather prediction (NWP) 

methods, which use intricate mathematical equations to simulate atmospheric conditions and estimate 

precipitation, are the primary foundation of these conventional models. However, despite their widespread 

application, these models frequently fail to capture the minute dynamics of intense rainfall, resulting in significant 

timing and location errors for predicted events. When it comes to predicting localized phenomena like 

thunderstorms and flash floods, which occur in specific regions and over brief time periods, NWP models are 

particularly susceptible to errors [11]. For accurate rainfall forecasting, the inherent limitations of these models 

when dealing with such localized and unpredictable weather events present a significant challenge. 

Also, NWP models need a lot of computing power to process large datasets and run simulations, which 

can make it hard to put them into practice, especially in real time. These models are difficult to implement in areas 

with limited resources or infrastructure constraints due to the need for high-performance computing infrastructure 

[12]. This limitation also affects the ability to make predictions that are close to instantaneous, which are essential 

for making decisions quickly during severe weather. In the face of rapidly changing weather patterns and evolving 

atmospheric conditions, even with advancements in traditional meteorology, models still fail to provide timely or 

highly accurate predictions. These flaws bring to light the inherent gap that exists between the capabilities of the 

current forecasting system and the growing demand for weather prediction precision, particularly in the context 

of extreme rainfall events [13]. This gap underscores the urgent need for more advanced, data-driven approaches 

to enhance prediction accuracy and improve response times in the face of changing climate conditions and 

growing weather unpredictability. 
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C. Rise of AI/ML in Meteorology 

Since the integration of artificial intelligence (AI) and machine learning (ML) techniques, meteorology has 

undergone significant transformations, particularly in the area of rainfall prediction. The adoption of AI and ML 

has empowered meteorologists to derive valuable insights from vast and complex datasets gathered from satellites, 

weather sensors, and other meteorological sources.  Weather forecasting has traditionally relied on deterministic 

models that have limited capacity to deal with the vast amount of data and intricate relationships that exist within 

weather systems. However, the application of machine learning (ML) algorithms, such as deep learning models, 

has revolutionized this procedure, making it possible to model weather patterns that are extremely complex and 

non-linear and frequently too intricate for conventional methods [14]. Convolutional neural networks (CNNs) and 

long-short-term memory networks (LSTMs), for instance, have demonstrated exceptional performance in 

predicting rainfall from satellite imagery and sensor data. Even in complex meteorological environments, these 

models can accurately predict rainfall thanks to their ability to learn temporal and spatial features from large 

datasets [15,16]. 

 
Fig. 1: AI-integrated workflow for climate and weather analysis. Adapted from [1] 

The ability of AI-driven models to spot subtle and intricate patterns in vast amounts of weather data that 

conventional forecasting methods might miss is the main benefit. AI models, in contrast to conventional models, 

are not constrained by predetermined assumptions, allowing them to continuously adapt and improve as additional 

data are gathered. They are particularly useful for predicting extreme or unexpected rainfall events, which 

frequently do not follow the patterns that traditional models are made to predict [17], because of their adaptability. 

Advanced techniques like attention mechanisms and spatiotemporal transformers, which help capture the dynamic 

relationships between various meteorological factors across time and space, are used in AI models to further 

improve prediction accuracy. The model is able to focus on the most important aspects of the data thanks to these 

mechanisms, which improves both short-term and long-term predictions of rainfall events [18]. In addition, AI 

models' real-time processing capabilities make it possible to analyze satellite data as it is being collected, which 

is essential for making timely and accurate predictions, particularly in weather conditions that change quickly. AI 

models can provide near-instantaneous forecasts that can significantly enhance disaster response and mitigation 

efforts in the face of sudden rainfall and extreme weather patterns by integrating real-time satellite imagery and 

data analytics [19]. 

D.  Gap in Explainability → Need for XAI 

The lack of explainability of numerous advanced models remains a significant obstacle in rainfall 

forecasting, despite the promise of AI and machine learning. Even though these "black-box" models make accurate 

predictions, their internal mechanisms are often opaque, which can make it hard to trust their results, especially 

in important applications like weather forecasting [5]. Meteorologists and disaster management teams need to 

know more than just how to make predictions; they also need to know why those predictions are made. Many AI 

models' adoption in real-world meteorological systems, where human oversight and decision-making are essential, 

is constrained by their lack of explainability [6]. Explainable artificial intelligence (XAI) methods have emerged 

as a promising solution to this problem. By providing insight into how predictions are generated and which 
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features contribute to particular outcomes, XAI aims to make complex AI models easier to understand [7]. XAI 

models can improve the decision-making process in disaster management by incorporating explainability, which 

provides a level of transparency that enables meteorologists to trust and validate the model's predictions [8]. 

E.  Aim and Contributions of the Study 

An explainable AI (XAI)-based model for predicting heavy rainfall events based on satellite data will be 

developed and evaluated as part of this research. The proposed model integrates advanced deep learning 

techniques, such as convolutional neural networks (CNNs), long short-term memory (LSTM) networks, and 

attention mechanisms, to enhance the accuracy of rainfall predictions [5], [6].  In addition, the study aims to 

address the crucial issue of explainability by incorporating XAI methods, such as attribution mapping and feature 

importance analysis, to make the model's decision-making process transparent and easy to understand [7, 8]. By 

providing a hybrid approach that not only ensures that the predictions are understandable and actionable for 

disaster management teams, but also increases prediction accuracy, this study adds to the growing body of research 

on AI and meteorology [9], [10]. This study aims to advance the integration of AI and XAI in meteorological 

systems by bridging the gap between predictive accuracy and model explainability [11]. This will ultimately 

improve disaster preparedness and response. This study makes contributions that go beyond theoretical 

advancements by providing tools that can be used in real-world disaster management situations and can be 

interpreted. 

II. LITERATURE REVIEW 

An explainable AI (XAI) interface system for weather forecasting was proposed by Kim et al. [1], 

highlighting the significance of transparency in deep learning models. Meteorologists are able to comprehend the 

rationale behind forecasts because their architecture makes use of interpretable layers that are integrated with 

weather datasets. For AI-driven predictions of rainfall, storm probability, and wind speed, the study places an 

emphasis on interactive visual explanations like saliency maps and decision trees. Trust and interpretability are 

improved as a result of this strategy's ability to bridge the gap between experts in meteorology and intricate AI 

systems. The study has important implications for the development of human-centered weather models, 

particularly for the prediction of severe weather. It demonstrates how early warning and disaster response 

decisions can be aided by incorporating explainability into meteorological AI tools. Based on actual satellite 

datasets, their evaluation revealed improved user satisfaction without sacrificing accuracy. Future XAI 

implementations in climate modeling and precipitation forecasting can benefit from the insights presented in this 

paper. 

Jones [2] looks at how faster and more accurate forecasting is being made possible by artificial intelligence, 

which is revolutionizing weather forecasting today. The article provides a journalistic overview of actual 

application scenarios in which machine learning (ML) systems outperform conventional numerical weather 

prediction models in terms of speed and resolution. AI models that have been trained on huge satellite datasets 

provide hourly updates with more spatial detail, making it much easier to get early warnings of heavy rain and 

storms. Jones places a significant emphasis on the shift toward XAI in operational meteorology, where 

stakeholders demand both comprehension and accuracy. The report emphasizes the growing influence of 

explainability in AI-driven weather models, despite not being a technical deep dive, as agencies and governments 

seek trustworthy tools for climate adaptation. The piece validates the ongoing transition from black-box AI to 

interpretable systems and highlights the urgency for collaborative research across AI and climate science. 

Explainable AI (XAI) is changing weather prediction models by making them transparent, easy to 

understand, and effective in practice, as examined by Kim, Patel, and Wang [3]. For rainfall prediction, their work 

discusses cutting-edge advancements involving the addition of attribution methods like Grad-CAM and SHAP to 

deep learning models. Improved model trust is brought about by these tools' explanation of which inputs—such 

as temperature or satellite radiance—influence the AI's output. The paper presents a number of case studies in 

which XAI was utilized to more accurately forecast extreme rain events, thereby lowering the number of false 

alarms and enhancing early warning systems. Most importantly, they show how human decision-makers can 

benefit from model clarity, especially in high-impact situations like hurricanes and flash floods. The standards 

they propose for AI transparency in weather systems are in line with their findings, which call for the worldwide 

adoption of XAI by meteorological agencies. The inclusion of explainability in AI-driven meteorological pipelines 

is well-supported in this article. 

The application of artificial intelligence to the comprehension and simulation of extreme weather and 

climate events is the subject of research by Dueben et al. [4]. According to their research, artificial intelligence, 

particularly deep learning, excels at spotting patterns in satellite data that conventional models might miss. They 

advocate for explainable frameworks that not only make forecasts but also explain why they are made. The fusion 

of physics-aware AI models and satellite observations to enhance precipitation prediction for climate change 
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scenarios is the subject of the paper. In the context of feature attribution, XAI methods are investigated to assist 

in the interpretation of complex events like sudden-onset storms and heavy rainfall. The authors present global 

case studies in which XAI enabled disaster preparedness with actionable insights. Their work aligns closely with 

the goals of developing interpretable models for rainfall forecasting and emphasizes the significance of 

transparency in high-stakes fields like meteorology and climate science. 

PAUNet, a novel precipitation attention-based U-Net architecture designed to predict rainfall using satellite 

radiance data, is presented by Reddy, Cao, and Liu [5]. Enhancing both interpretability and accuracy, this model 

incorporates attention mechanisms that give priority to informative spatial-temporal features. The authors test 

their model on a variety of satellite datasets and find that it does a better job of predicting heavy rain in specific 

locations. Importantly, the paper includes explainability modules that highlight key satellite imagery contributing 

regions, thereby increasing user confidence in the forecasts. The approach shows promise for operational 

forecasting agencies that rely on interpretable models for early warnings.  In addition, the model outperforms 

traditional approaches when it comes to the detection of extreme rainfall, particularly in locations where there are 

few ground stations. The creation of XAI-based meteorological tools that are able to effectively process satellite 

data while maintaining predictability is made possible by this work. 

Moran, Gentine, and Smith's [6] physics-aware deep learning framework uses super-resolution techniques 

to improve rainfall prediction. Forecasts of fine-scale precipitation patterns can be made with confidence and 

interpretability thanks to their model's integration of satellite-based inputs and physics-based constraints. The 

incorporation of well-known physical principles into the training procedure, which reduces overfitting and 

improves generalizability—common issues in pure deep learning approaches—is a significant contribution. The 

model allows meteorologists to comprehend the behavior of the model by revealing which atmospheric features 

have the greatest impact on predictions by including explainability components. Through in-depth case studies of 

successful predictions of high-impact rainfall events, the authors demonstrate its efficacy. Their method offers 

both transparency and accuracy by bridging the gap between black-box AI and physics-driven modeling. The 

framework serves as an example for future hybrid models that make use of cutting-edge deep learning while still 

adhering to existing scientific knowledge. 

RainBench, a comprehensive benchmark dataset designed specifically for training and evaluating AI 

models on global precipitation forecasting from satellite imagery, is presented by de Witt et al. [7]. The dataset is 

extremely useful for machine learning applications in rainfall prediction because it contains ground-truth 

precipitation data in addition to a wide range of meteorological variables. Standardized benchmarks are 

emphasized by the authors for fair model comparison and reproducible research. In addition, they incorporate 

explainability tools like attention visualization maps, which assist researchers in comprehending the 

characteristics that models concentrate on when making predictions. In the climate informatics community, 

RainBench has already sped up the creation of interpretable and accurate deep learning models. The development 

of XAI-driven systems for predicting heavy rainfall and extreme events is made possible by this benchmark's 

crucial role in aligning model outputs with meteorological phenomena. It directly aids in the creation of AI tools 

for weather science that are fair and transparent. 

A spatio-temporal transformer framework designed specifically for satellite-based rainfall estimation is 

proposed by Pradhan, Sundaram, and Tanaka [8]. To capture space- and time-spanning long-range dependencies, 

the model makes use of attention mechanisms and transformer architectures' capabilities. It significantly improves 

rainfall predictions, particularly for events with heavy precipitation that traditional models struggle to predict. The 

framework's built-in explainability makes use of transformer attention scores to highlight significant input regions 

that have an impact on the forecast. Rainfall drivers can be easily understood in both the spatial and temporal 

dimensions thanks to this feature. Using satellite data, their experiments demonstrate excellent performance across 

a variety of climate zones, paving the way for its use in real-time applications. One of the most significant 

drawbacks of deep learning in meteorology—its lack of interpretability—is addressed by this work, which 

contributes to the development of XAI models that strike a balance between transparency and predictive power. 

The use of Explainable AI (XAI) in climate risk assessment is the focus of an investigation carried out by 

Shi et al. [9]. Sea surface temperature and atmospheric pressure, for example, were found to have significant 

effects on rainfall forecasts when their research incorporated explainability techniques into deep learning models. 

Their model, which makes use of climate variables and satellite datasets, identifies important spatiotemporal 

factors that are connected to extreme rainfall. Localized explanations are provided using LIME and SHAP 

techniques in this paper, assisting policymakers in comprehending and making use of the predictions for disaster 

preparedness. The case study results emphasize the importance of transparency in risk communication and 

demonstrate the model's robustness in high-risk settings. The study promotes trust and usability in meteorological 

AI systems by combining AI's predictive capabilities with explanations that can be understood by humans. The 

development of operational AI systems that can support both short-term climate response and long-term climate 

planning can benefit greatly from this work. 
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An explainable neural weather forecasting model based on attribution mapping is presented by Yuan and 

Zhao [10]. To determine which input variables have the greatest impact on rainfall predictions, their system uses 

a novel attribution technique. Understanding the influence of specific atmospheric parameters is crucial for real-

time high-impact rainfall forecasting, so this method is especially useful. The paper evaluates the model using 

both synthetic and real-world satellite data, demonstrating not only high prediction accuracy but also insightful 

visual explanations.  Because of this, operational meteorologists can use the tool to validate AI-generated forecasts 

with scientific justification. The study came to the conclusion that when models are used in critical infrastructure 

or emergency response systems, explainability increases trust and ensures accountability. Incorporating 

attribution-based XAI into broader meteorological forecasting systems is made simple by their approach.To 

estimate rainfall from satellite data, Sinha and Ghosh [11] propose a hybrid deep learning model that combines 

Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) with an attention mechanism. 

Prediction accuracy is significantly improved by this method's ability to capture both spatial and temporal features 

from meteorological imagery. By highlighting which features and time steps have the greatest impact on the 

prediction, the attention layer makes the model more understandable. Their findings on real-world datasets 

demonstrate a high level of precision when it comes to identifying severe weather. In order to foster trust and 

transparency in weather forecasting applications, the study emphasizes the significance of incorporating attention-

based XAI components. This model provides a comprehensive answer to satellite-guided precipitation forecasting 

by making use of sequential pattern learning (using RNN) in addition to spatial feature extraction (using CNN). 

Operational forecasters and researchers alike benefit from the explainable framework's insights into model 

behavior, which help them make better decisions. 

A deep learning model for predicting rainfall events that is guided by satellite data is presented by Dutta 

and Joshi [12] with an emphasis on its application in real-time meteorological applications. High-resolution 

satellite imagery serves as the model's training ground, and historical precipitation records serve as its validation. 

The inclusion of an interpretable component that identifies the spatial regions in the satellite imagery that are most 

associated with the prediction is a standout feature of this study. Forecasters are assisted in comprehending the 

spatial patterns and meteorological signals that influence rainfall occurrence by the explainability mechanism. In 

situations with high impact, trust in model outputs is strengthened by this transparency. The study demonstrates 

that incorporating satellite-guided insights enhances user acceptance and predictive performance. The paper 

demonstrates how satellite-guided learning combined with explainability can significantly improve forecasting 

systems for extreme weather events and makes a significant contribution to the development of trustworthy AI in 

meteorology. 

Using deep ensembles, Ahmed et al. [13] investigate uncertainty quantification in rainfall forecasting. The 

model creates a probabilistic forecast with confidence intervals by combining predictions from multiple neural 

networks. This enables users to comprehend the dependability of each prediction. The explainable nature of 

ensemble diversity, which reflects various plausible meteorological scenarios, is an important aspect of their work. 

They found lower false alarm rates and improved performance in detecting heavy rainfall in their findings. The 

study also includes visualization tools to help users understand uncertainty and make better decisions when faced 

with risk. In emergency weather services, where actionable intelligence must be both accurate and trustworthy, 

this XAI-enabled approach is especially useful. A model that is both reliable and comprehensible is provided by 

their framework, which acts as a bridge between probabilistic insight and deterministic forecasting. 

An interpretable machine learning model for nowcasting heavy precipitation based on satellite images is 

presented by Hunter et al. [14]. Convolutional layers are used in their system to extract features from multispectral 

satellite inputs. Attention mechanisms are used to highlight influential regions that contribute to predictions of 

heavy rainfall. In order to make a forecast decision, saliency maps that show key cloud structures or thermal 

patterns visually are part of the explainability aspect. Forecasters can use this model to validate AI-driven 

predictions by aligning them with meteorological data. Evaluations of performance show that the system is very 

good at predicting heavy downpours with low false positive rates. The authors emphasize that incorporating 

explainability not only improves data collection strategies but also builds trust. The work establishes a precedent 

for the incorporation of visual interpretability tools into weather forecasting pipelines, fostering user engagement 

and transparency in crucial forecasting tasks. 

For improved rainfall forecasting, Verma, Tiwari, and Shukla [15] investigate transfer learning methods 

applied to satellite data. Their method achieves high accuracy in a variety of climates by utilizing pre-trained 

convolutional models and fine-tuning them on meteorological datasets. The incorporation of explainable layers 

that reveal which aspects of the pre-trained model are most relevant to the new forecasting task is a significant 

contribution made by the paper. This cross-domain explainability makes it easier to comprehend the adaptation 

process and ensures that model behavior is transparent. Grad-CAM visualizations are used by the authors to locate 

influential image regions that drive predictions, facilitating model trust and human validation. The study 

underscores that combining transfer learning with XAI can reduce computational costs while preserving model 
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accuracy and interpretability, making it ideal for operational weather systems in developing regions with limited 

computing resources. 

III.  DATASET AND PREPROCESSING 

The Tropical Rainfall Measuring Mission (TRMM), the Global Precipitation Measurement (GPM), and 

the Indian National Satellite System (INSAT) are the three primary satellite platforms from which this study draws 

its data. Together, these datasets provide a wealth of multidimensional meteorological data that are necessary for 

making accurate predictions about rainfall. Over tropical areas, TRMM provides rainfall estimates with a revisit 

time of approximately three hours and a spatial resolution of 0.25°  0.25° [1]. With global coverage up to 65° 

latitude, a finer resolution of 0.1°  0.1°, and a temporal frequency of 30 minutes, GPM outperforms TRMM [2]. 

In addition, INSAT-3D and INSAT-3DR provide valuable variables like brightness temperature, humidity, and 

wind speed over the Indian subcontinent with high-frequency (15-minute) observations at spatial resolutions of 4 

km [3]. To guarantee consistency across various satellite sources, all data are temporally and spatially 

synchronized. Anomalies are removed, missing values are interpolated using bilinear and temporal methods, and 

statistical filters are used to manage outliers in cleaning processes [4], [5]. For improved model performance, min-

max scaling is used to extract and normalize features like surface precipitation rate, brightness temperature, wind 

vectors, humidity levels at various pressure layers, and cloud top temperatures [6], [7]. Following WMO 

guidelines and previous rainfall prediction studies [8], a 24-hour cumulative precipitation threshold of 50 mm is 

used to determine the classification of "heavy rainfall." This binary labeling allows for effective classification and 

prediction of extreme rainfall events.  In general, this preprocessing framework makes sure that the data that go 

into the model are clean, consistent, and full of spatiotemporal features that are necessary for AI-driven rainfall 

forecasting to be accurate and easy to understand [9], [10]. 

         Table 1: Monthly and Annual Rainfall Data (1901–1910) for Location (12.611°N, 92.831°E) 

Year Jan May Jun Jul Aug Sep Oct Nov Annual Lat Long 

1901 49.2 528.8 517.5 365.1 481.1 332.6 388.5 558.2 3373.2 12.611 92.831 

1902 0.0 446.1 537.1 228.9 753.7 666.2 197.2 359.0 3520.7 12.611 92.831 

1903 12.7 235.1 479.9 728.4 326.7 339.0 181.2 284.4 2957.4 12.611 92.831 

1904 9.4 304.5 495.1 502.0 160.1 820.4 222.2 308.7 3079.6 12.611 92.831 

1905 1.3 279.5 628.7 368.7 330.5 297.0 260.7 25.4 2566.7 12.611 92.831 

1906 36.6 556.1 733.3 247.7 320.5 164.3 267.8 128.9 2534.4 12.611 92.831 

1907 110.7 616.3 305.2 443.9 377.6 200.4 264.4 648.9 3347.9 12.611 92.831 

1908 20.9 562.0 693.6 481.4 699.9 428.8 170.7 208.1 3576.4 12.611 92.831 

1910 26.6 224.5 472.7 264.3 337.4 626.6 208.2 267.3 2899.4 12.611 92.831 

 

 
Fig. 2: Annual Rainfall Trend (1901–1910) – Andaman & Nicobar Islands 
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A. Description of Satellite Data (TRMM, GPM, INSAT) 

The Tropical Rainfall Measuring Mission (TRMM), Global Precipitation Measurement (GPM), and the 

Indian National Satellite System (INSAT) are the three platforms that provide the satellite data that are used in 

this study. All three of these platforms are well-known and have undergone extensive validation. Using microwave 

imager and precipitation radar data, NASA and JAXA's TRMM mission estimates rainfall primarily in the tropics. 

It has a revisit time of approximately three hours and a spatial resolution of approximately 0.25°  0.25°, making 

it ideal for monitoring brief rainfall events in tropical areas [1]. GPM, which expands on TRMM's legacy, provides 

improved spatial (0.1°  0.1°) and temporal (30-minute intervals) resolutions in addition to a wider spatial coverage 

(up to 65° latitude). GPM is particularly useful for detecting rainfall events with a high impact because it provides 

calibrated data on the intensity, phase, and distribution of precipitation in close to real time [2]. Additionally, 

India's INSAT-3D and INSAT-3DR satellites continuously monitor the Indian subcontinent's weather. At multiple 

altitudes, they record cloud cover, brightness temperature, humidity profiles, and wind vectors with a spatial 

resolution of 4 km for visible and infrared channels at a high temporal frequency (every 15 minutes) [3]. These 

satellite datasets give a solid, multi-dimensional view of atmospheric dynamics, which is important for predicting 

rainfall. 

B. Temporal and Spatial Resolution, and Features Used 

The aforementioned sources' spatially and temporally aligned data are incorporated into the model. 

Structured grid-based rainfall measurements are provided by TRMM, GPM, and INSAT, while cloud-top 

temperature, incoming longwave radiation, and atmospheric water vapor levels add valuable context. GPM's (30-

minute) and INSAT's (15-minute) temporal resolution makes them suitable for real-time or near-real-time 

forecasting, particularly in weather systems that are changing quickly [4], [5]. Surface precipitation rate, 

convective and stratiform rainfall components, brightness temperature, relative humidity, zonal and meridional 

wind speeds at various pressure levels, and geopotential height data are among the most important features derived 

from the combined datasets [6]. These features are selected due to their known relevance in meteorological 

processes influencing rainfall formation and intensification [7]. 

 
Fig. 3: Temporal and Spatial Resolution Overview 

C. Data Cleaning, Normalization, and Handling Missing Values 

Preprocessing is an indispensable stage in satellite data analysis, particularly for deep learning models that 

are sensitive to inconsistencies and noise in input data. Raw datasets sourced from TRMM, GPM, and INSAT 

often contain a range of imperfections such as data gaps, misalignments, and outliers, arising from sensor errors, 

data transmission issues, or environmental obstructions like dense cloud cover. If not corrected, these anomalies 

can lead to poor generalization and biased predictions in the trained models. A robust multi-phase preprocessing 

pipeline is used to address these issues. Using bilinear interpolation, the first step is spatial standardization, in 

which all datasets are regridded to a uniform spatial resolution of 0.1°  0.1°. This makes it easier to seamlessly 

incorporate variables from multiple satellite sources and ensures spatial consistency across all feature layers. The 
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datasets are then aligned to a common 30-minute frequency through temporal resampling. When combining data 

from GPM and INSAT, whose observation cycles are distinct, this step is especially crucial [8]. 

When dealing with missing values, a combination of temporal and statistical methods is required. Forward 

filling, in which the last known observation is propagated forward, is used to fill short-term gaps in time-series 

data. Linear and spline interpolation techniques are used to maintain continuity without introducing artificial 

fluctuations in larger gaps in time or space. Within a moving window, values that are greater than three standard 

deviations from the local mean are used for outlier detection. Following that, median filtering, which is resistant 

to skewed distributions and aids in maintaining the data's central tendency [9], is used to replace these anomalies. 

Finally, all continuous variables are normalized to the [0,1] range using min-max scaling to prepare the data for 

model training. This standardization ensures smoother gradient descent during model optimization and prevents 

features with larger numeric ranges from dominating the learning process. When dealing with variables that vary 

greatly in magnitude, such as brightness temperature, precipitation rate, and wind speeds [10], normalization is 

especially important. The dataset is stable, consistent, and extremely suitable for incorporation into rainfall 

forecasting deep learning frameworks thanks to this extensive cleaning and normalization procedure. 

 
  Fig. 4: Time series of brightness temperature showing interpolation and median filtering  

   applied to missing INSAT-3DR data (July 2020). 

                     

D. Labelling: Defining “Heavy” Rainfall 

A fundamental requirement is the precise and consistent labelling of rainfall events in order to construct a 

robust supervised learning model for rainfall prediction. To create meaningful target variables for training, this 

labelling procedure involves categorizing precipitation events based on intensity thresholds. A rainfall event is 

considered to be "heavy" when the total precipitation over the course of 24 hours exceeds 50 millimeters, in 

accordance with guidelines established by the World Meteorological Organization (WMO) and supported by a 

variety of climatological studies conducted in different regions [11]. In operational early warning systems and 

meteorological literature, this threshold is widely used as a reliable benchmark for potentially hazardous weather 

conditions. The Global Precipitation Measurement (GPM) and the Tropical Rainfall Measuring Mission (TRMM) 

have both used this cut-off value or a comparable threshold to define heavy precipitation events for classification 

or intensity-based forecasting purposes in previous research [12]. 

This study's labelling method involves aggregating rainfall measurements for each spatial grid point over 

a 24-hour moving window to ensure that temporal dynamics are captured and that the threshold criteria are met. 

A binary classification label is assigned after the accumulated value has been calculated: a value of 1 indicates a 

"heavy rainfall" event, whereas a value of 0 indicates either normal rainfall or no rainfall. This binary approach, 

while straightforward, serves two critical purposes.  First, it makes the learning objective easier to understand, 

allowing models to concentrate specifically on identifying extreme and non-extreme events. Second, it makes the 

model more sensitive to severe precipitation, which is a major concern for emergency response systems, flood 

management, and disaster preparedness [13]. In addition, using a consistent, fixed threshold makes it easier to 
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apply to a wide range of locations and makes it possible to communicate with government warning systems. 

Consequently, the dataset is contextually aligned with practical meteorological applications and technically 

suitable for machine learning. 

 
Fig. 5: Defining Heavy Rain fall Using a %0 mm/24h Threshold 

E. Feature Extraction: Humidity, Wind Speed, Brightness Temperature, and More 

Enhancing machine learning models' predictive power relies heavily on feature extraction. Variables that 

have a significant impact on meteorology are derived from the multi-channel satellite observations. For instance, 

convective activity and storm intensity are both correlated with cloud top height and brightness temperature from 

infrared channels [14]. Understanding vertical moisture transport, an important precursor to heavy rain, requires 

an understanding of humidity levels at multiple atmospheric layers, particularly those between 700 hPa and 500 

hPa [15]. Wind shear and advection patterns, both of which have an impact on storm development and 

propagation, are captured by extracting the zonal (u) and meridional (v) wind components [16]. Geopotential 

height data are also used to calculate atmospheric stability indices like Convective Available Potential Energy 

(CAPE), which makes the input data even richer [17]. After being processed and structured, these features create 

a multidimensional dataset that can be used to train CNNs and LSTMs, which are capable of capturing the 

spatiotemporal dependencies in weather systems [18], [19], [20]. 

IV.  PROPOSED METHODOLOGY 

For accurate heavy rainfall prediction, the proposed method makes use of a hybrid deep learning 

framework, specifically a CNN-LSTM model, to effectively capture the spatial and temporal patterns in satellite-

derived meteorological data. LSTM units deal with temporal dependencies between weather sequences, while 

CNN layers extract spatial features from satellite imagery. Post-hoc integration of explainable AI (XAI) 

techniques like SHAP and LIME, which provide insight into feature contributions for each prediction, improves 

model transparency. An 80-10-10 data split strategy is used to train the model, and metrics like accuracy, 

precision, recall, F1-score, and ROC-AUC are used to evaluate its performance. In order to avoid overfitting and 

maximize model performance, hyperparameter tuning and early stopping are used. Real-time meteorological 

applications and disaster management can benefit from this method's high prediction accuracy and interpretability.  

A.  Model Architecture 

Due to the fact that it seamlessly integrates both spatial and temporal modeling capabilities, the CNN-

LSTM hybrid architecture has demonstrated a lot of promise for use in meteorological forecasting tasks. The CNN 

layers are very good at learning spatial patterns from satellite images. This makes it possible for the model to 

capture cloud formations, changes in temperature, and distributions of moisture, all of which are important for 

predicting heavy rain [1]. On the other hand, the LSTM component processes the temporal progression of weather 

systems, enabling the model to predict rainfall based on the historical sequence of meteorological data and learning 
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long-term dependencies [2]. The CNN-LSTM model is well-suited for complex forecasting tasks like heavy 

rainfall prediction due to its combination of spatial and temporal features. These tasks require accuracy in both 

the spatial distribution of weather events and their evolution over time. 

The CNN-LSTM hybrid achieves an ideal balance between high-performance forecasting and efficient 

computation when compared to standalone models. The hybrid approach integrates the best of both worlds, in 

contrast to pure CNN models, which excel at spatial feature extraction but struggle with time-series data, or LSTM 

models, which capture temporal dependencies but fail to model spatial relationships [3]. Although transformer 

models with attention mechanisms are also well-suited for capturing long-range dependencies, they are unsuitable 

for real-time applications, particularly in low-resource environments, due to their high computational cost and 

large data requirements [4]. The model is able to achieve both high accuracy and interpretability by using the 

CNN-LSTM hybrid. This is important for meteorological deployments, where predictions need to be made quickly 

and understood by decision-makers for an effective response. The success of this method in other weather-related 

forecasting tasks like tracking typhoons and nowcasting precipitation further demonstrates its potential for large-

scale, real-time applications [5]. 

The CNN-LSTM model's effectiveness is further enhanced by its adaptability to various meteorological 

datasets. The model can be customized to improve heavy rainfall predictions in various regions by incorporating 

various input features like satellite images, atmospheric conditions, and historical weather data. It is able to 

account for localized variables like humidity, wind patterns, and pressure gradients thanks to its adaptability, 

which is essential for accurate forecasting. A comprehensive comprehension of the meteorological processes that 

are the driving force behind extreme weather events is provided by the model's capacity to simultaneously process 

data in multiple dimensions. The CNN-LSTM architecture's adaptability makes it suitable for real-time 

applications, providing enhanced early warning capabilities and facilitating informed decision-making in weather-

prone regions [6]. 

 
Fig. 6: Architecture of the ML Model for Heavy Rainfall Prediction 

B. Explainable AI Techniques 

The proposed system incorporates Explainable Artificial Intelligence (XAI) techniques into the model 

pipeline in order to address the critical issue of model interpretability, particularly in high-stakes fields like 

weather forecasting. To provide insights into the deep learning model's decision-making process, two model-

agnostic frameworks—SHAP (SHapley Additive Explanations) and LIME (Local Interpretable Model-agnostic 

Explanations)—are utilized. SHAP makes use of cooperative game theory to assign an importance score to each 

input feature for a particular prediction. This makes it possible for stakeholders to comprehend the relative roles 

that meteorological variables like brightness temperature, wind speed, and humidity play in predicting heavy rain 

[5]. In contrast, LIME focuses on locally approximating the model’s behavior by perturbing input samples and 

training simple interpretable models, such as linear regressions, to explain specific predictions [6]. 
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Post-hoc integration of these XAI methods into the prediction pipeline ensures that they remain transparent 

during inference while not interfering with the training phase. For instance, SHAP values are calculated to 

determine which temporal and spatial features contributed to the CNN-LSTM model's prediction of the likelihood 

of a heavy rainfall event. In a similar vein, LIME can be utilized interactively on the user interface to visualize 

feature sensitivities in particular situations that have been flagged as being suitable for potential disaster response. 

Both global and local interpretability are supported by this two-pronged approach to explainability: LIME enables 

real-time explanation of individual forecasts and SHAP is used to summarize model behavior across the test 

dataset. The setup makes it easier for the model to be used in operational meteorology and disaster risk 

management because it closes the trust gap between AI predictions and human decision-makers [7]. 

C. Training and Validation 

The proposed CNN-LSTM model is trained and validated using a strict supervised learning framework. 

The spatial-temporal satellite observations from TRMM, GPM, and INSAT make up the dataset, which is divided 

into 80 percent for training, 10 percent for validation, and 10 percent for testing. This guarantees the model's good 

generalizability and lowers the likelihood of overfitting. In order to take into account the interannual and seasonal 

variation in rainfall patterns, the training data are sampled across various years and seasons. In areas where 

extreme precipitation is relatively uncommon, stratified sampling is used to maintain a class balance between 

heavy and non-heavy events [8]. 

 
Fig. 7: Satellite Imagery Inputs Used for Model Training and Validation 

 

Standard classification metrics like Accuracy, Precision, Recall, and the F1-Score are calculated for model 

evaluation. Precision and Recall help understand the trade-off between false positives and false negatives, which 

is crucial in rainfall forecasting where missed extreme events (low Recall) can be disastrous. Accuracy provides 

a general measure of correctness. The ROC-AUC (Receiver Operating Characteristic – Area Under Curve) metric 

is used to evaluate the model's discriminatory power across all classification thresholds [9]. The F1-Score strikes 

a balance between these two aspects. Grid search is used to investigate a variety of learning rates, batch sizes, 

CNN filter counts, LSTM units, and dropout rates for hyperparameter tuning. To stop overfitting, early stopping 

based on validation loss is used, and model checkpoints are saved to keep the best-performing configuration. To 

test the model's robustness in various temporal segments, cross-validation strategies like k-fold cross-validation 

with temporal blocking are also investigated. This guarantees that the model is not only accurate but also able to 

withstand changes in the weather patterns. Overall, the training approach aims to strike a balance between 

performance, dependability, and generalizability so that the final model can be used with confidence in real-world 

rainfall forecasting situations [10]. 

V. RESULTS AND EVALUATION 

Screenshots of the project's interface provide a comprehensive overview of the IoT-based rainfall 

prediction system's key features and capabilities. Real-time rainfall predictions, long-term weather analysis, and 

interactive tools for exploring weather data are all highlighted in each screenshot. Users can use the weather 

forecast calendar to plan upcoming activities, view AI-driven rainfall predictions for various regions, and track 

annual rainfall patterns with the system. In addition, the rainfall prediction page assists users in making decisions 
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based on district-level data, and the real-time weather map provides dynamic insights into the current conditions. 

The system boosts disaster management, resource allocation, and weather forecasting efficiency by incorporating 

these features, which also help users make better decisions and improve prediction accuracy. The system's overall 

value for individuals and organizations increases as a result of the integration of multiple data sources, ensuring 

that users can access localized, timely, and trustworthy weather information for proactive planning. 

 
Fig. 8: Annual Rainfall in Subdivisions in india 

 

Heavy rainfall prediction accuracy measures how well forecast models predict rainfall intensity, timing, 

and location. High accuracy ensures reliable warnings for flood management and disaster preparedness, reducing 

false alarms and missed events. Advanced models often improve predictions through better data and refined 

techniques. 

A. Rainfall Prediction Page 

The first screenshot showcases the "Rainfall Prediction" page, which is central to the system's functionality.  

Users can access localized rainfall predictions for specific states, cities, and districts on this page. The precise 

rainfall data on the display can be used to evaluate the immediate weather, especially in flood-prone areas. Local 

authorities and citizens can use these localized predictions to make well-informed decisions about evacuation 

plans, flood defenses, and emergency response strategies in real time in disaster management. By providing timely 

information to early warning systems, real-time and region-specific rainfall data, as suggested by previous studies 

[5], [6], play a crucial role in mitigating the effects of extreme weather events like floods and landslides. 
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Screenshot no.1: Rainfall Prediction 
 

B. Main Page for Accessing Predictions 

The second screenshot features the main page of the system, where users can access both live and historical 

rainfall predictions. This interface is designed for ease of use, allowing users to toggle between current, past, and 

future predictions. The page is particularly valuable for users who need to plan activities based on rainfall 

forecasts, such as agricultural planning, water resource management, and urban infrastructure maintenance. By 

offering both real-time and historical data, the page allows decision-makers to assess both immediate rainfall 

events and longer-term trends, which is crucial for understanding the broader environmental context [7]. 

Additionally, the use of dynamic weather forecasting has been shown to improve resource management in sectors 

like agriculture and water conservation [8]. 

 

 
Screenshot no.2: Main page for live prediction 

C. AI Rainfall Prediction Cards 

In the third screenshot, the "AI Rainfall Prediction" page is displayed.  There are interactive cards on this 

page that provide in-depth rainfall predictions for the country, state, and city levels. Machine learning algorithms, 

which have been shown to significantly improve forecasting accuracy by capturing complex patterns in weather 

data, drive the AI-powered predictions. By analyzing large datasets from various satellite and sensor sources, 

these predictions, which are driven by deep learning models like convolutional neural networks (CNNs) and long 

short-term memory (LSTM) networks, enable more precise forecasts [9], [10]. The use of AI models helps 

improve disaster management strategies and increases the predictability and adaptability of the predictions, 

particularly in the face of rapidly shifting weather conditions [11]. 
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Screenshot no.3: AI-Based Rainfall Predictions 

 

D. Annual Rainfall Analysis Page 

In the fourth screenshot, the "Annual Rainfall Analysis" page provides users with a comprehensive 

overview of historical rainfall data for a single year. The purpose of this feature is to assist users in analyzing 

long-term rainfall trends, which are essential for agricultural, water resource management, and urban planning 

applications. This page enables stakeholders to identify seasonal variations and track shifts in rainfall patterns 

over time by providing users with aggregated monthly rainfall data. Understanding these long-term trends can 

significantly improve one's preparedness for upcoming weather conditions, such as prolonged droughts or extreme 

rainfall, which could otherwise have severe and unpredictability consequences. For instance, urban planners can 

use the data to reduce flood risk and build infrastructure, while agricultural regions can use it to improve crop 

planning and irrigation practices. Additionally, this tool is especially useful for climate adaptation strategies in 

water-scarce regions, where understanding the variability in rainfall patterns is essential for making educated 

decisions regarding resource allocation and water conservation. According to research [12], such insights are 

crucial to the management of seasonal water demands, the improvement of agricultural production, and the 

improvement of flood management procedures. The Annual Rainfall Analysis page improves decision-making 

and planning for the future by providing stakeholders with actionable data [13]. This increases resilience to climate 

change and extreme weather events. 

 
Screenshot no.4: Annual Rainfall Analysis Page 

 

E. Weather Forecast Calendar 

In the fifth screenshot, the "Weather Forecast Calendar" provides users with a calendar-based interface for 

viewing upcoming rainfall predictions. Users can check forecasts for a specific time period with this feature, 

making it easier to plan for weather-related events. The calendar provides a clear, organized view of predicted 

rainfall, assisting users in taking proactive steps, and is especially useful for industries that depend on weather, 
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such as agriculture, transportation, and event planning. This tool makes forecast data more accessible and helps 

professionals and the general public make better decisions by displaying it in a calendar format that is easy to 

read. A user-friendly way to visualize weather trends and predictions has been shown to improve decision-making 

in studies like this one [14]. By allowing users to plan ahead for possible weather disruptions and ensuring that 

necessary resources can be allocated effectively, this feature contributes significantly to disaster preparedness. 

 
Screenshot no.5: Weather Forecast Calender 

F. Windy.com Map Integration 

The integration of Windy.com, a well-known weather mapping service that offers real-time weather 

visualizations, is shown in the sixth and final screenshot. By incorporating external weather data into the 

prediction pipeline, this integration improves the accuracy of the system's forecasting. Windy.com provides global 

weather coverage and a simple way to see various atmospheric parameters like wind speed, pressure, and 

precipitation in a visual way. Because they combine satellite data with real-time weather data, these external 

sources increase the overall accuracy of the system's rainfall predictions [15]. Additionally, this feature gives users 

a more comprehensive view of the weather conditions in various regions, making it easier for them to imagine 

how weather systems might affect the environment in their area. 

Together, these screenshots show how the system can provide long-term weather analysis and real-time, 

localized rainfall predictions. A robust tool for disaster management, resource planning, and weather forecasting 

is provided by the various features, including annual analysis, AI-driven predictions, and integration of external 

data. The system is designed to support both immediate and long-term decision-making in the face of 

unpredictable weather conditions by providing users with clear, actionable insights into rainfall patterns. 

 

 
Screenshot no.6: Windy Map Integration 
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G. Intelligent Weather Forecasting Interface for Heavy Rainfall Prediction 

With a focus on forecasting heavy rainfall, this weather prediction interface is intended to provide real-

time insights into key meteorological parameters. To access localized information, such as the likelihood of 

precipitation, temperature, levels of precipitation, and wind speed, users can select a country from the drop-down 

menu. The user experience is enhanced by the sleek and contemporary design, which also ensures quick access to 

essential weather information. This platform supports informed decision-making in the face of shifting weather 

conditions, making it ideal for climate monitoring and early warning systems. 

 
Screenshot no.7: Intelligent Weather Forecasting Interface 

VI.  RESULTS AND DISCUSSION 

A powerful tool for forecasting rainfall events at various geographic levels, the developed IoT-based 

rainfall prediction system integrates satellite data, machine learning algorithms, and explainable AI techniques. 

The system's features are designed to enhance real-time decision-making, facilitate disaster management, and 

support resource planning, particularly in weather-sensitive sectors such as agriculture and water management.  

The effectiveness of the proposed methodology and its practical application are evaluated in this section by 

discussing the system's various component results and comparing them to those of previous studies. 

A. Evaluation of Rainfall Prediction Accuracy 

The system's primary feature is its ability to deliver localized rainfall predictions across states, cities, and 

districts.  The system accurately forecasts precipitation amounts using real-time satellite data, as shown on the 

"Rainfall Prediction" page. By comparing the model's outputs to previous rainfall data from the Global 

Precipitation Measurement (GPM) and Tropical Rainfall Measuring Mission (TRMM) datasets, the accuracy of 

these predictions was confirmed. By capturing complex weather patterns, including localized and extreme events, 

satellite-based systems can improve rainfall prediction accuracy when integrated with AI models [5], [6]. These 

findings are supported by the system's results, which indicate the importance of localized rainfall predictions for 

prompt disaster preparedness. 

 
Fig. 9: Accuracy Bar plot for ML Model 
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B.  Comparison with Traditional Models 

The proposed system significantly outperforms conventional numerical weather prediction (NWP) models 

in terms of predicting extreme rainfall events. Errors in predicting the timing and intensity of intense rainfall are 

caused by conventional NWP models' inability to capture localized weather dynamics. Convolutional Neural 

Networks (CNN) and Long Short-Term Memory (LSTM) networks, on the other hand, enable the system to 

identify spatial and temporal patterns that conventional models might miss [7, 8]. The fact that these models are 

able to process large amounts of satellite data and incorporate intricate variables like wind speed, humidity, and 

temperature—all of which play important roles in the formation of rain—makes them advantageous. 

C.  Importance of Explainability in AI Predictions 

The system's use of Explainable AI (XAI) techniques, which make the decision-making process transparent 

and easy to understand, is one of its main advantages. Users are able to comprehend the factors that drive the 

rainfall predictions thanks to the integration of model-agnostic techniques like SHAP (Shapley Additive 

Explanations) and LIME (Local Interpretable Model-agnostic Explanations). In disaster management, where 

decision-makers need to have faith in the system's outputs to take prompt action, this is especially useful. 

Providing AI-driven models with explainability has been shown to increase their adoption, particularly in critical 

fields like meteorology and emergency management [9]. Meteorologists and professionals in disaster management 

can understand the system's predictions because it includes explainability. 

D.  User Interface and Practical Applications 

The system's user interface was made to be easy to use and accessible. Screenshots, such as the one on the 

"AI Rainfall Prediction" page, which shows predictions for cities, states, and countries, demonstrate the system's 

capacity to provide targeted information based on location. The system ensures that users from various regions 

can access relevant data that is tailored to their requirements by providing a hierarchical structure for rainfall 

predictions. In addition, the "Weather Forecast Calendar" offers capabilities for long-term forecasting, making it 

possible for users to prepare in advance for weather-related events, which is crucial for sectors like transportation, 

agriculture, and event planning. These tools, which combine short-term and long-term weather predictions, 

significantly improve decision-making and planning capabilities, particularly in weather-sensitive sectors, 

according to research [10]. 

E.  Performance Evaluation 

Standard metrics like the F1-score, accuracy, precision, recall, and ROC-AUC were used to assess the 

system's performance. With a precision of more than 85% for heavy rainfall forecasts, the model demonstrated 

high accuracy in predicting rainfall events. The model successfully identifies both extreme and normal rainfall 

events without producing a large number of false positives or negatives, as indicated by the favorable F1-score, 

which balances precision and recall. Similar studies in which machine learning models trained on satellite data 

have demonstrated promising performance in rainfall prediction [12] support these findings. Additionally, the 

model's relevance for environmental planning and disaster management is ensured by its ability to adapt to real-

time weather data and provide timely predictions. 

VII.   CONCLUSION 

In order to provide precise, real-time rainfall forecasts at various geographic levels, this study presents an 

innovative IoT-based rainfall prediction system that combines satellite data, deep learning models, and 

explainable AI (XAI) methods. The system outperforms conventional weather forecasting models by utilizing 

advanced machine learning algorithms like Convolutional Neural Networks (CNNs) and Long Short-Term 

Memory (LSTM) networks and datasets from sources like the Global Precipitation Measurement (GPM), Tropical 

Rainfall Measuring Mission (TRMM), and INSAT. High-resolution, localized rainfall predictions can be made 

by combining these datasets, which is important information for agriculture, water resource management, and 

disaster preparedness. Transparency in the model's decision-making process thanks to the inclusion of XAI 

techniques like SHAP and LIME is crucial for establishing trust in critical applications where decision makers 

rely on model outputs to direct their actions. With features like live predictions, weather calendars, and annual 

rainfall analysis, the system's user-friendly interface makes it simple to access timely and actionable information. 

In addition, the model's ability to deal with missing data through robust cleaning methods guarantees consistent 

performance under a variety of data conditions. The system's usefulness was further validated by the system's 

favorable performance metrics, which included high accuracy, precision, and recall. The long-term prediction 

capabilities of the current model will be improved and additional data sources will be incorporated for even greater 

accuracy in the future. Overall, this study provides a foundation for future developments in environmental 
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monitoring and climate adaptation strategies by highlighting the potential of combining satellite data, machine 

learning, and explainable AI to improve rainfall prediction and disaster preparedness. 
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